

SURREY

International Ocean Vector Wind Science Team Meeting Kailua-Kona, Hawaii USA

6-8 May 2013

CYGNSS Wind Retrieval Performance

Chris Ruf⁽¹⁾, Maria-Paola Clarizia^(1,2), Andrew O'Brien⁽³⁾, Joel Johnson⁽³⁾, Zorana Jelenak⁽⁴⁾, Paul Chang⁽⁴⁾, Valery Zavorotny⁽⁵⁾

(1) University of Michigan, (2) UK National Oceanographic Centre,
(3) Ohio State University, (4) NOAA/NESDIS, (5) NOAA/ESRL

For more information: http://cygnss-michigan.org

Outline

- Description of End-to-End Simulator
- Properties of Level 1 Data Product, the Delay Doppler Map (DDM)
 - Transformation from Delay (i.e. relative time-of-flight between direct and reflected signal) and Doppler (L1 carrier doppler shift of reflected signal) coordinates to spatial coordinates
 - Sensitivity to non-uniform wind speed distribution
- Wind speed retrieval algorithms
 - Use of average scattering cross-section ("scatterometer mode")
 - Use of delay waveform rising edge ("altimeter mode")
 - Retrieval performance (**preliminary**)

CYGNSS End-to-End Simulator

- Orbit propagators for GPS and CYGNSS constellations establish measurement geometry
- Nominal GPS transmission properties assumed
- Free space propagation with precip optical depth included
- Bi-static rough surface forward scattering from the ocean surface
 - Small slope approximation using semi-empirical roughness spectrum (tuned to fit aircraft GNSS-R hurricane overflight data)
 - Speckle noise modeled by Monte Carlo approach with geometrics optics approximation over coherent integration time
 - (modeling led by V. Zavorotny and J. Johnson)
- Baseline CYGNSS antenna and receiver designs
 - Thermal noise
 - DDM sampling characteristics

Geometry of Bi-static Scattering

Voronovich's small-slope approximation of the 1st order

 q_0

Bistatic Radar Cross Section (BRCS)

$$\sigma_{\alpha\alpha_{0}}\left(\vec{k},\vec{k}_{0}\right) = \frac{1}{\pi} \left| \frac{2q_{k}q_{0}}{q_{k}+q_{0}} B_{\alpha\alpha_{0}}\left(\vec{k},\vec{k}_{0}\right) \right|^{2} e^{-(q_{k}+q_{0})^{2}W(0)} \int \left(e^{-(q_{k}+q_{0})^{2}W(\vec{r})} - 1 \right) e^{-i\left(\vec{k}-\vec{k}_{0}\right)\vec{r}} d\vec{r}$$

Correlation function of $\longrightarrow W(\vec{r}) = \int S(\vec{\xi}) e^{i\vec{\xi}\vec{r}} d\vec{\xi}$ Roughness spectrum

Statistics of the elevations is assumed to be Gaussian with spectrum S and corresponding correlation function W; indices α , $\alpha 0 = 1,2$ correspond to vertical and horizontal polarization, correspondingly.

 q_k

DDM Sampling Information

- DDM mode delay resolution and range:
 - 128 pixels @ 250 ns per pixel (~4/chip) in delay
 - 20 pixels @ 500 Hz per pixel in Doppler
 - Delay and Doppler step sizes consistent with ~50% drop in ambiguity function given CYGNSS orbit geometry
 - On board integration: 1 ms coherent, 1 s incoherent
- 4 simultaneous DDMs per satellite per second

What is computed?

$$\begin{aligned} SNR(\tau, f_{dop}) &= \frac{P_T G_T \lambda^2 G_R}{(4\pi)^3 k T^\circ B_D} \\ &\times \iint F(\vec{\rho}) \Lambda^2(\tau, \vec{\rho}) \left| S(f_{dop}, \vec{\rho}) \right|^2 R_0^{-2} R^{-2} \sigma_0(\vec{\rho}) d^2 \rho. \end{aligned}$$

•	Pt is GPS transmit power	14.25	dBw	(metadata)
•	Bd is 1/coherent integration time	1	kHz	(fixed)
•	T0 is 290 * Noise Figure	580	К	(metadata)
•	Gt is GPS antenna gain	13	dBi	(metadata)
	 Needs attitude/geometry information 			
•	Gr is CYGNSS antenna gain	var	dBi	(metadata)
•	F is CYGNSS receive antenna patte	(ancillary)		
	 Needs attitude/geometry information 			
•	R0, R, GPS/CYG lat/long/alt/veloc	ity, specu	Ilar point location	(metadata)

R0, R, GPS/CYG lat/long/alt/velocity, specular point location (me
 <u>Sigma0 from GO; needs slope variances and reflection coeff</u>

- Coherent integration produces 1 ms data product
- Thermal noise added to 1 ms product
 - thermal noise created by generating white Gaussian noise and convolving ambiguity function to create correlation wrt delay and Doppler
- Incoherent integration to 1 sec final DDM

SURREY

Example of Actual DDMs measured by UK-DMC-1 mission

The Higher the wind and waves the lower the return and greater the signal spreading over the surface

E2ES Model Validation Using Airborne TC Overflights and UK-DMC-1 Spaceborne Obs

- Airborne (P-3) flights demonstrations for WS<40 m/s
- Spaceborne (UK-DMC-1) flight demo for WS<10 m/s
- Significant unknown with CYGNSS version of E2ES: High wind response at orbital altitudes (wind non-uniformity)

CYGNSS Simulator Validation and Performance Predictions									
Platform	Altitude (km)	Wind speed (m/s)	Science antenna gain (dBi)	Incidence angle of specular point	Empirical wind speed uncertainty (m/s)	Model wind speed uncertainty (m/s)			
P-3	3	10	3	45	±1.2	±0.9			
P-3	3	40	3	45	±4.8	±3.7			
UK-DMC-1	680	10	11	45	±2.3	± 2.0			
CYGNSS	500	10	11	45		±0.7*			
CYGNSS	500	33 (Cat 1)	11	45	To be completed after CYGNSS on-	±4.23*			
CYGNSS	500	50 (Cat 3)	11	45	orbit cal/val	±5.73*			
CYGNSS	500	70 (Cat 5)	11	45		±6.8*			

(* Assumes 25x25 km CYGNSS spatial resolution)

SURREY

Relationship Between (Delay, Doppler) and Spatial Coordinates

Maximum Extent of Delay and Doppler for 25 and 50 km Resolution

TC Nature Run Input Wind Fields (provided by Dave Nolan, U-Miami)

- 4 different times,
 6 hours apart
- 480x480 data points
- 1 km reporting grid, ~4 km effective resolution

Wind Speed Histogram for 4 Files 12000 10000 8000 Number of Points 6000 4000 2000 0 70 20 30 40 -10 0 10 50 60 Wind Speed (m/s)

speed10, Wind Speed (nrdata₀8-06-00h06.mat)

Domain of Nature Run for each DDM Computation

• 100 x 100 km domain

DDMs Computed Along TC Transects

Example DDMs Along Tracks

DDM Animations (enter presentation mode to play animations)

Nature Run wind field and the six samples selected

Wind speeds shown are raw nature run values (not spatially averaged)

Spatially Smoothed Wind Fields

Ppatial filter of Nature Run. Top hat filter with a width of 10, 20, 30 and 40 km

Wind Retrieval from DWS

• The integrated Delay Waveform Slope (DMS) is the leading edge slope of the DDM integration along the Doppler

For the 25x25 km2 case, select a DD range of [2 chip, 5 kHz].

DWS vs. Wind Speed

Regression curve of wind speed vs slope & estimated slope from 6 waveforms

text

Spatial Integration of the DDMs

DDM integration regions chosen based on surface area covered by particular delay-Doppler bins

Wind Retrieval from DDMA

- DDMA is the average value of a "portion" of DDM;
- Select the DD range based on the spatial average we are considering

For the 25x25 km2 case, we selected a DD range of [1 chip, 1 kHz].
 For the 50x50 km2 case, we selected a DD range of [3 chip, 3 kHz].

Sub-sampled Nature Run

wind speed+subset of sample:

DDMA vs. Wind Speed

